小林 和博

博士(理学)

青山学院大学理工学部経営システム工学科准教授

小林和博,Juliaによる数理最適化,2023年.

【読書対象】 数理最適化を用いていろいろな分野の問題を解きたい方で,パッケージを用いた迅速なモデル構築の方法を学びたい方を読者として想定している。

【書籍の特徴】 科学技術計算で用いられるプログラミング言語であるJuliaでは,数理最適化のための便利なパッケージが利用可能である。本書では,これらのパッケージを用いて,様々なクラスの最適化問題を解く方法を解説する。取り上げたのは,現実に遭遇する問題を解く際に有用な,適用範囲が広く,よく用いられる最適化問題である。

本書では,錐構造を持つ最適化問題として,線形最適化問題(LP)の他に,2次錐最適化問題(SOCP)と半正定値最適化問題(SDP)も扱っている。最近のアルゴリズム研究とその実装技術の進展により,LPと比較して計算量の大きいSOCPとSDPも,手軽に用いることのできる数理最適化問題とみなせるようになってきた。SOCPとSDPはLPよりもモデル化能力が高く,様々な分野の問題の解決に有効であるが,それらをコンピュータを用いて解く方法を扱った書籍は少ない。本書では,Juliaでこれらの問題を解く方法を解説している。また,離散最適化と連続最適化の両方を扱うことで,読者が遭遇する幅広い問題を解く技術が身につけられるように留意した。

小林和博,錐最適化・整数最適化・ネットワークモデルの組合せによる 最適化問題入門,Pythonによる問題解決シリーズ2,近代科学社,2020年.

 様々な問題をPythonで解くことを目指す「Pythonによる問題解決シリーズ」第2弾。

 最適化問題に焦点を当てる本書では、解き方が分かっている典型的な最適化問題(ナップサック問題や巡回セールスマン問題など)を組み合わせ、Pythonパッケージを用いるプログラミングに落とし込んで解へと導く。

 パッケージとしてPyomoやPICOSなどを使い、また、Pythonで最適化問題を解くためのモデリング言語としてPuLPを使う。

本書では、それらのツールの使い方はもちろん、解法プログラムについても丁寧に解説する。